On the Convergence Speed of Tetration

Marco Ripà
sPlqr Society, World Intelligence Network
Rome, Italy
e-mail: marcokr1984@yahoo.it

Published Online: 15 Oct. 2018

Abstract: In 2011, in his book “La strana coda della serie n^n^n...n”, M. Ripà analyzed some properties involving the rightmost figures of integer tetration, the iterated exponentiation \(b^a \), characterized by an increasing number of stable digits for any base \(a > 1 \). A few conjectures arose about how many new stable digits are generated by any unitary increment of the hyperexponent \(b \), and Ripà indicated this value as \(V(a) \) or “convergence speed” of \(a \). In fact, when \(b \) is large enough, \(V(a) \) seems to not depend from \(b \), taking on a (strictly positive) unique value, and many observations supported this claim. Moreover, we claim that \(V(a) = 1 \) for any \(a \mod 25 \in \{ 2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23 \} \) and \(V(a) \geq 2 \) otherwise.

Keywords: Number theory, Power tower, Tetration, Chinese reminder theorem, Charmichael function, Euler’s totient function, Exponentiation, Integer sequence, Graham’s number, Convergence speed, Modular arithmetic, Stable digit, Rightmost digit.

2010 Mathematics Subject Classification: 11A07, 11F33.

1 Introduction

In the present paper, we introduce some conjectures involving the rightmost digits of the Tetration \(b^a = a^{a^{a^{...}}} \) \((b\text{-times}) \) [1], observing that, when the hyperexponent \(b \) is sufficiently large and \(a \mod 25 \not\equiv \{ 0, 1, 5, 7, 10, 15, 18, 20, 24 \} \), the amount of new stable digits generated by any unitary increment of \(b \) is unitary as well: it depends only on the congruence modulo 25 of the base \(a \) [2].

This new result, if formally proved, would contribute to improve big numbers rightmost digits calculations, opening new scenarios in cryptography/cryptanalysis too [3-4].
2 Convergence Speed and Congruence (mod 25)

It is well known that, for any arbitrarily large \(n \), \(b^a \) originates a string of \(n \) stable figures, thus we can say that \(b^a \) is well-defined modulo \(10^n \), for any \(b \geq b'(n, a) \) [2-5-6].

We can easily prove also that, \(\forall k \in \mathbb{N}, a^{20^k+1} \equiv a \pmod{25} \). In fact, \(\forall n \in \mathbb{N} \setminus \{0\}, \lambda(n) \leq \varphi(n) \). Thus, \(\lambda(25) = \varphi(25) = 20 \).
Let \(a \) be such that \(\gcd(a, 25) = 1 \) \(\iff \gcd(a, 5) = 1 \), \(a^{\varphi(25)} \equiv 1 \pmod{25} \) \(\Rightarrow a^{20+1} \equiv a \pmod{25} \). Hence \(a^{20^k+1} \equiv a \pmod{25} \).
For any \(a \) such that \(a \equiv 5 \pmod{10} \), \(\forall m \in \mathbb{N} \setminus \{0, 1\}, a^m \equiv 0 \pmod{25} \) \(\Rightarrow a^m \equiv a^{m+1} \pmod{25} \). Therefore, \(a^2 \pmod{25} \equiv a^3 \pmod{25} \equiv \ldots \equiv a^{20+1} \pmod{25} \equiv \ldots \equiv a^{20^k+1} \pmod{25} \). \(\square \)

Let us now introduce the definition of “convergence speed” as it was originally presented by Ripà in his book about the rightmost digits of \(b^a \) [1].

Definition 1: Let \(a \in \mathbb{N} \setminus \{1\} \) be an arbitrary base which is not a multiple of 10 and let \(b \in \mathbb{N} \setminus \{0, 1\} \) be such that \((b-1)a \equiv b^a \pmod{10^d} \) \(\land \) \((b-1)a \not\equiv b^a \pmod{10^{d+1}} \), where \(d \in \mathbb{N} \), we consider \(V(a) \equiv b^a \equiv (b+1)a \pmod{10^{((d+V(a))} \) \(\land \) \(b^a \not\equiv (b+1)a \pmod{10^{(d+V(a)+1)}} \).

For simplicity, from here on out, we refer to \(V(a) \) as the “convergence speed” of the natural base \(1 < a \not\equiv 0 \pmod{10} \) of the tetration \((b\geq b')a \).

3 The Conjectures about \(V(a) \)

In this section we present the conjectures and a few remarks to point out their main implications.

Conjecture 1: \(\forall a \in \mathbb{N} \setminus \{1, 2\} \) such that \(a \not\equiv 0 \pmod{10} \), \(\exists b' < a \in \mathbb{N} \setminus \{0\} \) \(\exists \), \(\forall b \geq b' \), \(V(a) \in \mathbb{N} \setminus \{0\} \) is constant (see A317905 of the OEIS - ruling out the first term of the sequence [2]).

Conjecture 2: Assume \(b \in \mathbb{N} \setminus \{0, 1, 2\} \), \(\forall a \in \mathbb{N} \setminus \{1\} \) such that \(a \not\equiv 0 \pmod{10} \),

\[b^a \equiv (b+1)a \pmod{10^{(b-2)V(a)}} \).

Remark: If Conjecture 2 holds, it follows that \((b - 2) \cdot V(a) \leq d + V(a) \), hence \(\forall b > 3 \),
\[V(a) \leq \frac{d}{b-3} \text{ (e.g., if } a = 143^625 \text{ and } b \geq 5, 4 = V(a) \leq \frac{9+6+6+5+25}{b-3} = \frac{17+(b-4)-4}{b-3} \text{ is true).} \]

Ripà’s hypothesis: \(\forall a \in \mathbb{N} \setminus \{1, 2\} \) such that \(a \not\equiv 0 \pmod{10} \), \(\exists b' < a \in \mathbb{N} \setminus \{0\} \) \(\exists \), \(\forall b \geq b' \),

\[\{ V(a) = 1 \iff a \pmod{25} \in \mathbb{C} = \{2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 16, 17, 19, 21, 22, 23\} \}
\[\{ V(a) \geq 2 \iff a \pmod{25} \in \mathbb{C} = \{0, 1, 5, 7, 15, 18, 24\} \}

Remark: It is very important to notice that, given $a \, (mod\, 25) \in \mathbb{C}$ (or equivalently $V(a) = 1$), it follows that $V(a^m) \geq 2$, $\forall m = 5 \cdot n \in \mathbb{N}\backslash\{0\}$, and $V(a^m) = 1$ otherwise (for any m such that $m \, (mod\, 10) \equiv \{1, 2, 3, 4, 6, 7, 8, 9\}$).

On the contrary, for any base such that $a \, (mod\, 25) \in \mathbb{C}$, $V(a^n) \geq 2$, since $a^n \, (mod\, 25) \in \mathbb{C}$ too ($\forall n \in \mathbb{N}\backslash\{0\}$). We point out that $V(a) \geq 2 \Rightarrow a^{m+1} \, (mod\, 25) \equiv a \, (mod\, 25)$, $\forall m = 4 \cdot n$.

Conjecture 3: $\forall v \in \mathbb{N}\backslash\{0\}$, $\exists a$, not a multiple of 10, such that $V(a) = v$.

Remark: In order to prove Conjecture 3, it is sufficient to verify that, for any n-digits long base $a := a_n ... a_2a_1$, where $a_1 = a_2 = \cdots = a_n = 9$, $V(a = 9 ... 9) = n \, (\forall b)$ (see [1], pp. 25-26).

From Ripà’s hypothesis, it follows that $a(n = 1) \in \mathbb{C} \Rightarrow V(a) = 1$ and $a(n \geq 2) \in \mathbb{C} \Rightarrow V(a) \geq 2$.

Conjecture 4: Let $\text{len}(a(i))$ denote the length of the i-th term any (strictly positive) integer sequence $a(n)$ constructed through the juxtaposition of integers, $\forall i \in \mathbb{N}$ such that $\text{len}(a(i)) \geq 2$,

$a(i)a(i) \equiv a(i+1)a(i+1)\, (mod\, 10^{\text{len}(a(i))})$.

Remark: This conjecture was firstly introduced in 2011 [1] and two examples of this property are given by the sequences A317903 and A317824 of the OEIS [7-8].

4 Conclusion

It is not easy to provide a short proof of any of the conjectures introduced in Section 3 and this could be the subject of another paper that we hope to release in the near future.

We conclude with a very important question that we wish to answer: “Is it possible to identify a new function $\mathcal{R}(V(a)) := \min_{R}\{|V(a + k \cdot R) - V(a)|, \forall V(a) = n \in \mathbb{N}\backslash\{0\} \text{ and } \forall k \in \mathbb{N}_0$ (e.g., $\mathcal{R}(V(a) = 1) = \mathcal{R}(1) = 25$ by Ripà’s hypothesis)”?.

Any original contribute to help us to prove the aforementioned conjectures would be appreciated.

References

